
www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

541 Copyright © 2011-15. Vandana Publications. All Rights Reserved.

Volume-5, Issue-2, April-2015

International Journal of Engineering and Management Research
Page Number: 541-543

Randomized Generation of Game Levels through Programming using
Binary Space Partitioning

Shreevallabh Sunil Kulkarni

Sinhgad College of Engineering, Pune, INDIA

ABSTRACT
Video Games are fruitful applications of various branches of
Science and Technology. Artificial Intelligence is one of most
important branch of this category. Every year game
developers are coming up with numerous new games. Day by
day involvement of Artificial Intelligence in games is
increasing to make game playing experience better. Artificial
Intelligence can be considered as bridge between game world
and programming, as various aspects of games interact with
game world objects with use of Artificial Intelligence only.
Building a game level is a part of Game Design process. Game
Level Design is usually done with complete human
involvement to design immersive game world. But inducing
Artificial Intelligence in Game Level Design process can
drastically decrease the time require to work on Game Design
pipeline. This plummet will reduce the total application
development time and will result in cost reduction of project.
This paper will show process to use Binary Space Partitioning
(BSP) to generate game levels which will require little to no
attention of human. This process can also be used to generate
game levels on the fly at run time. Either the intended
algorithm can be induced in Game Logic to generate game
world at run time or it can be used as hardcoded mechanism
to produce levels while developing the game itself.

Keywords— Binary Space Partitioning; Game Level
Design; Game Optimization; Procedural Level Generation

I. INTRODUCTION

Game Development is undoubtedly one of most

interesting branch of Software Development. Despite this
fact, game development goes through many different
phases. Game Development process can be considered as a
glorious statue standing on three pillars viz. Game Art,
Game Design, and Game Programming. Unless all these
three units work hand in hand we cannot see a game
becoming famous within intended audiences. Out of them
Game Design brings remaining 2 phases together and
creates a world where a player can interact. Being a salient
process, it’s important to give more emphasis on designing
aspect.

II. BACKGROUND AND NECESSITY

Game Development team takes major efforts on

designing game world. But having an algorithm to do this
work can effectively reduce downtime for other work like
programming and will give developers more time to spend
on other aspects of game as well. So the proposed
algorithm can dynamically generate game levels and can
place in-game entities by itself and create a playable level
in a matter of seconds. This process is also called as
Procedural Level Generation [1]. Games developers have
already tried to implement this in their games and were
able to achieve good results too. Some games used this
technique to place textures on brushes at run time while
some games implemented it in a way that can increase the
playable area if player tries to explore more than he/she
intended to. A game named “RoboBlitz” used procedurally
generated textures in order to reduce the file size of the
game [2]. If used, such Procedural algorithms can change
the way of developing games especially for specific
genres, e.g. Endless Runners for Mobile Platform,
Roguelike games.

Drunkard Walk Algorithm is considered as one of the
simplest dungeon generation algorithm so far which works
on grids [3]. This algorithm is randomization based and
gives fairly good results without sacrificing much of
system resources.

Drunkard Walk Algorithm:
1. X= Pick(Random_Point).
2. Mark x as Floor.
3. If(!Floor)then

move(Random_direction(North,East,West,South)).
4. Repeat (2), (3) until room explored.

III. LEVEL GENERATION USING BSP (BINARY

SPACE PARTITIONING)
A.

A. What is Binary Space Partitioning?
Binary Space Partitioning is a method of dividing

an area into smaller pieces. Basically you take an area

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

542 Copyright © 2011-15. Vandana Publications. All Rights Reserved.

called “leaf” and split it either vertically or horizontally.
This process repeats on smaller areas over and over again
until each area is having a desired size.
B. Significance of BSP in Level Generation?

It is possible to write a simple logic to create
randomly sized rectangles at random positions but this
could result a map which is full of overlapping, clumped or
strangle placed rooms. It also makes it a little more
difficult to connect the rooms together and make sure there
are no orphaned rooms. But BSP can guarantee more
evenly spaced rooms while making sure the rooms can be
connected to each other flawlessly [4].

IV. ALGORITHM

The algorithm starts with a rectangular dungeon with

filled wall cells. The algorithm then split this dungeon
recursively until each sub-dungeon has approximately the
size of a room. The dungeon splitting goes through
following operations [5]:

1. Choose Random Direction: Vertical or Horizontal.
2. Choose Random Position: X for Vertical, Y for

Horizontal.
3. Split the dungeon into 2 sub-dungeons.

Figure 1: Splitting First Time.

Now as we have received 2 sub-dungeons, we can

apply the algorithm again on each sub-dungeon
individually. This will give us a logical structure of rooms
in form of a tree.

 Figure 2: Second Splitting Operation

 These iterations will result in various dungeons of
varying size. The only work left now is to connect these
dungeons together. This can be done by running a new
algorithm to find proper direction for each dungeon to
create doorways. In the end, we will receive a complete
dungeon comprise of various sub-dungeons connected to
each other.

Figure 3: End Result, After Connecting All Sub-Dungeons

Together

 While connecting sub-dungeons we start from leaves,
and then if design demands we connect non-leaf nodes too.
This will add complexity in map design.
 To make maximum use of this algorithm we can
randomly place treasures, hidden rooms and in-game items
into dungeon. A player start and Dungeon Exit entities can
also be placed this way. A series of ambient light scattered
all over dungeon can complete base setup need to test
dungeon. If the application is strong enough, it can produce
ready to play level or this procedure can be used to make a
prototype of very large level.
 To find neighborhood entities, simple coordinate level
Neighborhood automata can be used. For two-dimensional
automata, the two most common types of neighborhoods
are Moore neighborhoods and Von Neumann
neighborhoods [6].

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

543 Copyright © 2011-15. Vandana Publications. All Rights Reserved.

 Figure 4: Moore Neighborhood

 A Moore neighborhood is a square of size 1(unit size)
consists of the eight cells surrounding “c”, including those
surrounding it diagonally. The surrounding 8 cells indicate
names of directions.

 Figure 5: Von Neumann Neighborhood

Von Neumann Neighborhood is like cross centered on

P: Above, Below, Left, Right. Von Neumann
Neighborhood can primarily use coordinates to find nearby
entities or brushes.

V. FUTURE SCOPE

This system currently works well with regular
shaped dungeons/rooms. However using irregular shaped
dungeons/rooms will add more versatility and decrease
monotone feel. This unevenness will always give user to
something new to explore in the world.

VI. CONCERNS

 It’s not easy to make sure that world is always playable
in terms of experience. Sometimes player may be unlucky
to get an interesting game level. Poorly done procedural
generation can make the world feel monotonous and
boring. After player have seen dozen randomly generated
mazes, they all starts to looks same, even they have
difference in details [7].

VII. CONCLUSION

 This algorithm will need different implementation
strategies of various games. Depending on game genre and
type of world the game demands this algorithm need to be
enhanced. But if implemented, starting from Roguelike
games to high end games, this technique can make
dramatic changes in development phases of game design
and can even change the way game loads behind the
loading screen where player keeps starring and dreaming
about the upcoming world he is going to live in [8].

REFERENCES

[1] http://en.wikipedia.org/wiki/Procedural_generation
[2] http://en.wikipedia.org/wiki/RoboBlitz#Development
[3] http://pcg.wikidot.com/pcg-algorithm:drunkard-walk
[4] http://gamedevelopment.tutsplus.com/tutorials/how-to-
use-bsp-trees-to-generate-game-maps--gamedev-12268
[5]
http://www.roguebasin.com/index.php?title=Basic_BSP_D
ungeon_generation
[6] http://www.raywenderlich.com/66062/procedural-
level-generation-games-using-cellular-automaton-part-1
[7] http://gamedev.stackexchange.com/a/58326
[8]
http://www.roguebasin.com/index.php?title=Main_Page

	Introduction
	Background and Necessity
	Level Generation using BSP (Binary Space Partitioning)
	A. What is Binary Space Partitioning?
	B. Significance of BSP in Level Generation?

	Algorithm
	Future Scope
	Concerns
	Conclusion
	References

